
Astronomy & Astrophysics manuscript no. main ©ESO 2023
June 26, 2023

Self-consistent equilibrium models of prominence thin threads
heated by Alfvén waves propagating from the photosphere

Llorenç Melis1, 2, Roberto Soler1, 2, and Jaume Terradas1, 2

1 Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain

2 Insitut d’Aplicacions Computacionals de Codi Comunitari (IAC3), Universitat de les Illes Balears, E-07122, Palma de Mallorca,
Spain

June 26, 2023

ABSTRACT

The fine structure of solar prominences is made by thin threads that outline the magnetic field lines. Observations show that trans-
verse waves of Alfvénic nature are ubiquitous in prominence threads. These waves are driven at the photosphere and propagate to
prominences suspended in the corona. Heating due to Alfvén wave dissipation could be a relevant mechanism in the cool and partially
ionised prominence plasma. Here, we explore the construction of 1D equilibrium models of prominence thin threads that satisfy en-
ergy balance between radiative losses, thermal conduction, and Alfvén wave heating. We assume the presence of a broadband driver
at the photosphere that launches Alfvén waves towards the prominence. An iterative method is implemented, in which the energy
balance equation and the Alfvén wave equation are consecutively solved. From the energy balance equation and considering no wave
heating initially, we compute the equilibrium profiles along the thread of the temperature, density, ionisation fraction, etc. On these
equilibrium profiles, we use the Alfvén wave equation to compute the wave heating rate, which is then put back in the energy balance
equation to obtain new equilibrium profiles, and so on. The process is repeated until convergence to a self-consistent thread model
heated by Alfvén waves is achieved. We have obtained equilibrium models composed of a cold and dense thread, a extremely thin
PCTR, and an extended coronal region. The length of the cold thread decreases with the temperature at the prominence core and
increases with the Alfvén wave energy flux injected at the photosphere. However, equilibrium models are not possible for sufficiently
large wave energy fluxes when the wave heating rate inside the cold thread becomes larger than radiative losses. The maximum value
of the wave energy flux that allows an equilibrium depends on the prominence core temperature. This constrains the existence of
thread equilibria in realistic conditions.

Key words. magnetohydrodynamics (MHD) – Sun:atmosphere – Sun:corona – Sun:filaments,prominences – Sun:oscillations –
waves

1. Introduction

Solar prominences consist of masses of relatively cool and dense
plasma suspended in the solar corona, whose physical proper-
ties are similar to those in the chromosphere (see, e.g., Vial &
Engvold 2015). High-resolution observations have shown that
prominences are composed by a myriad of thin threads, which
seem to outline particular field lines of the general magnetic
structure of prominences (see, e.g., Lin 2011; Martin 2015).
The mechanical equilibrium of prominences suspended above
the photosphere can be established when the upward force pro-
vided by the magnetic field compensates gravity (see, e.g., Par-
enti 2014; Gilbert 2015; Heinzel 2015). On the other hand, the
energy balance in solar prominences is a problem not so well
understood (Gilbert 2015). A detailed knowledge of the heating
and cooling processes operating in prominences is needed to ex-
plain the temperatures at prominence cores, which are estimated
to be in the range 7,000–9,000 K (see Parenti 2014). According
to radiative-equilibrium models, heating due to radiative illumi-
nation is believed to be the main heating source (e.g., Heasley
& Mihalas 1976; Anzer & Heinzel 1999; Heinzel et al. 2010;
Heinzel & Anzer 2012). Using a slab model, Heinzel & Anzer
(2012) computed radiative-equilibrium temperatures within the
expected range of values for a plasma composed of hydrogen
alone. However, if CaII losses are added, much lower radiative-

equilibrium temperatures are obtained and, for certain condi-
tions, they can be as low as 4,400 K (see details in Heinzel &
Anzer 2012). To the best of our knowledge, the effect of addi-
tional coolants has not been explored, but it may be that even
lower radiative-equilibrium temperatures would be obtained if
additional coolant species are added. Therefore, although ra-
diative heating would be dominant in prominences, we cannot
presently discard that additional sources of heating are also play-
ing a role. The purpose of the present paper is to explore the role
of Alfvén wave dissipation as a potential heating mechanism in
solar prominences that could complement radiative heating.

Mechanical and thermal equilibrium models of prominence
thin threads have been studied before. For instance, Degen-
hardt & Deinzer (1993) studied the equilibrium between cooling
and an imposed heating without considering the effect of ther-
mal conduction. More detailed equilibrium models of threads
were constructed by Terradas et al. (2021), who studied the bal-
ance between radiative cooling, thermal conduction, and heat-
ing. However, the heating considered by Terradas et al. (2021)
was arbitrarily imposed rather than being the result of an ac-
tual physical process. The present work follows the method of
Terradas et al. (2021) to construct equilibrium models but using
a consistently computed heating from the dissipation of Alfvén
waves.
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Observations have shown that transverse waves are ubiqui-
tous in fine structures of solar prominences (see the review by
Arregui et al. 2018). These waves are interpreted as magnetohy-
drodynamic waves of Alfvénic nature (see, e.g., Lin et al. 2009;
Ballester 2015). There are strong indications that the transverse
waves observed in prominences are driven at the photosphere,
where the prominence magnetic field is anchored (Hillier et al.
2013). It has been shown that Alfvénic waves can travel from
the photosphere to the coronal structures, like prominences or
coronal loops, transporting a significant amount of energy (see
Soler et al. 2019, 2021). The existence of an efficient dissipation
mechanism in the prominence plasma could provide a way to
thermalise the wave energy. The fact that the prominence plasma
is only partially ionised introduces important dissipation mecha-
nisms for Alfvén waves, namely ambipolar diffusion due to ion-
neutral collisions and enhanced Ohm’s diffusion due to electron-
neutral collisions (see Ballester et al. 2018). Thus, heating due to
Alfvénic waves arises as a possible heating mechanism in solar
prominences whose importance needs to be explored.

There are some previous works that have explored the role
of Alfvén wave heating in prominences. Using monochromatic
waves and considering ion-neutral collisions, Pécseli & En-
gvold (2000) concluded that Alfvén wave heating may only
compensate for a tiny part of radiative losses. However, these
authors did not consider a more realistic broadband spectrum
of waves, whose presence is observationally confirmed (Hillier
et al. 2013). Conversely, Parenti & Vial (2007) estimated that the
heating produced by the dissipation of unresolved non-thermal
motions in prominences, which were attributed to Alfvén waves,
could indeed compensate for a large fraction of radiative losses.
Later, Soler et al. (2016) used an idealised slab model with
a straight magnetic field transverse to the slab axis. The slab
was filled with a homogeneous and partially ionised prominence
plasma and was embedded in a fully ionised corona. No fine
structure was considered. Alfvén waves were launched towards
the prominence slab and heating due to ion-neutral collisions
was computed. Soler et al. (2016) estimated that the heating
could account for about 10 % of radiative losses if a spectrum of
wave periods between 0.1 to 100 s is considered. Although the
model was simple, the results of Soler et al. (2016) evidenced
the potential of wave heating in solar prominences.

A further study of wave heating in solar prominences was
done in Melis et al. (2021), where the model implemented was
more elaborated. An important difference with the previous work
by Soler et al. (2016), is that Melis et al. (2021) considered a
model for a thin thread including longitudinal non-uniformity
and the anchoring of the magnetic field at the ends of the model
representing the base of the corona. In the central part of the
thread, where the plasma is densest and coolest, partial ioniza-
tion and the roles of Ohm’s and ambipolar diffusion were in-
cluded. In the model of Melis et al. (2021), Alfvén waves were
driven at one end on the thread to mimic photospheric excitation.
Their results showed that wave heating could compensate for ra-
diative losses in the cool part of the thread, where the plasma
was partially ionised, although the energy balance was not con-
sistently satisfied because the density and temperature profiles
were assumed ad hoc and the back reaction of wave heating upon
those profiles was not considered.

The aim of the present work is to go further and continue the
study of Alfvén wave heating in prominence thin threads. Here
the goal is to investigate the effect of wave heating in the equi-
librium of threads. To this end, we shall combine the method
to compute the wave heating rate of Melis et al. (2021) with
the method to compute equilibrium models of Terradas et al.

(2021). In the presence of wave heating, threads should tend
to an equilibrium configuration where wave heating consistently
affects the profiles of density, temperature, and other variables
along the thread. To study such influence and to investigate un-
der what conditions an equilibrium is possible, we will imple-
ment a self-consistent approach loosely inspired by that used in
Ofman et al. (1998) for heating by resonant absorption in coro-
nal loops. Starting from a thread model that includes no wave
heating, the wave heating rate will be computed following Melis
et al. (2021). Then, following Terradas et al. (2021), the energy
balance equation will be solved including wave heating, and a
new thread model will be obtained. The wave heating rate will
be re-calculated in the new thread model and energy balance will
be imposed again. This, in turn, will lead to a different thread
model, and so on. This scheme will be run iteratively until con-
vergence to a self-consistent model is reached.

This paper is structured as follows. Section 2 contains an ex-
planation of the thread model, the basic equations, and the imple-
mentation of the self-consistent method. In Section 3, we present
and discuss the results. Finally, some conclusions are given in
Section 4.

2. Method

2.1. Thread models satisfying energy balance

As in Melis et al. (2021), we use a 1D prominence thread model
composed of a single magnetic field line of length L = 108 m.
Curvature and gravity are not considered, hence the magnetic
field line is straight with a uniform value of B = 10 G. We align
the magnetic field with the z-axis for convenience. The centre of
the thread is located at z = 0, whereas its ends are located at
z = ±L/2. For simplicity, we assume a uniform gas pressure of
p = 5×10−3 Pa. A sketch of the thread model is shown in Figure
1.

The density, ρ, and temperature, T , profiles are expected to
be non-uniform along the thread, but p is assumed to be uni-
form in order to preserve the hydrostatic equilibrium. Density
and temperature are related with the pressure through the ideal
gas law, which for a hydrogen plasma is

p = (1 + ξi)ρRT, (1)

where ξi is the ionisation fraction defined as the ratio between
ion density with total density and R is the ideal gas constant. In
the cool parts of the thread, we expect the plasma to be partially
ionised and so ξi < 1. In order to realistically obtain the ioni-
sation fraction in a solar prominence thread, we would need to
solve the full radiative transfer equations including incident ra-
diation. This is far beyond the aims of this work. Instead, we ap-
proximate the ionization degree using the tabulated values given
in Heinzel et al. (2015), which are based on non-LTE computa-
tions for 1D prominence slabs. In Table 1 we indicate the values
of the ionisation fraction as a function of the temperature for the
pressure value considered here. The data of Table 1 is interpo-
lated for intermediate temperatures and ξi = 1 is imposed for
T ≥ 20,000 K. If either T or ρ is known, Equation (1) can be
used to compute the other variable. Hence, we shall focus on the
computation of T .

In order to obtain the temperature profile, we solve the en-
ergy balance equation given by

⟨Q⟩ − ∇ · q − L +C = 0, (2)

where ⟨Q⟩ denotes the heating rate (this will be the wave heating,
as explained later), q = −κ∥∇T is the heat flux due to thermal
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Fig. 1. Sketch of the 1D thread model. The grey areas denote the photosphere, where the thread ends are anchored. The red color gradient aims to
represent the density distribution along the thread.

T 6000 8000 10000 12000 14000
ξi 0.41 0.52 0.68 0.81 0.89

Table 1. Values of the ionization fraction, ξi, for various values of the
temperature (in K) for a gas pressure of 5×10−3 Pa and an altitude above
the photosphere of 20,000 km. Adapted from Heinzel et al. (2015)

conduction with κ∥ the parallel thermal conductivity, L repre-
sents the energy losses caused by radiative cooling, and C may
represent other heating sources like, e.g., heating due to viscous
dissipation or radiative heating. Alfvén wave dissipation due to
viscosity is less efficient than ambipolar dissipation in promi-
nences, while a consistent treatment of radiative heating is well
beyond our aims. Therefore, these additional sources are ignored
here.

In a partially ionised plasma, the parallel component of the
thermal conductivity with respect to the magnetic field can be
approximated by κ∥ ≈ κe + κn, where κe and κn are the contri-
butions of electrons and neutrals, respectively, which are given
by

κe = 3.2
n2

ek2
BT

αe + αee
, (3)

κn =
5
3

n2
nk2

BT
αn + αnn

, (4)

where kB is the Boltzmann constant, ne and nn are the number
density of electrons and neutrals, respectively, αe and αn are
the corresponding electron and neutral total friction coefficients,
and αee and αnn are the electron and neutral friction coefficients
accounting for self-collisions. The total friction coefficients are
computed as

αβ =
∑
β,β′

αββ′ , (5)

where β and β′ denote the different species that collide, that
could be electrons (e), neutrals (n) or ions (i), and αββ′ = αβ′β
are the symmetric friction coefficients between individual par-
ticles. If the collision is between charged particles, the friction
coefficient is

αββ′ =
nβnβ′e4 lnΛββ′

6π
√

2πϵ20 mββ′
(
kBT/mββ′

)3/2 , (6)

where mββ′ = mβmβ′/
(
mβ + mβ′

)
is the reduced mass, e is the

electron charge, ϵ0 is the electrical permittivity, nβ is the number
density, and lnΛββ′ is the Coulomb’s logarithm, expressed as

lnΛββ′ = ln

24πϵ3/20 k3/2
B T 3/2

e3 √nβ + nβ′

. (7)

If at least one particle is neutral, the friction coefficient is

αβn = nβnnmβn

[
8kBT
πmβn

]1/2

σβn, (8)

whereσβn is the collision cross-section. See details in Melis et al.
(2021).

The radiative cooling rate is computed using the function
provided in Athay (1986), which is frequently used in the lit-
erature to approximate radiative losses in cool prominence plas-
mas (see, e.g., Mok et al. 1990). We use Athay’s function be-
cause it provides lower radiative losses than other cooling ta-
bles based on the optically thin approximation that may overes-
timate the actual losses for cool prominence temperatures. How-
ever, we note that other approaches are possible (see Dalgarno &
McCray 1972), which more recent cooling functions implement
(e.g., Schure et al. 2009; Hermans & Keppens 2021; Brughmans
et al. 2022). The adopted radiative function is written down as

L(ρ,T ) = fp(T )
ρ2T 2

m2
p
, (9)

where mp is the proton mass and fp is an analytical function of
the temperature that can be cast in MKS units as

fp(T ) = 10−35T−2
{
0.4 exp

[
−30

(
log10 T − 4.6

)2
]

+4 exp
[
−20

(
log10 T − 4.9

)2
]

+4.5 exp
[
−16

(
log10 T − 5.35

)2
]

+2 exp
[
−4

(
log10 T − 6.1

)2
]}
. (10)

We note that because of the variation along the thread of
the temperature, density, and ionization degree, both the thermal
conductivity, κ∥, and the radiative cooling rate, L, are functions
of z. For a given profile of the heating rate, ⟨Q⟩, Equation (2)
results in a complicated second order ordinary differential equa-
tion for the temperature profile, T , that needs to be solved nu-
merically. To do so, we consider the same boundary conditions
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as in Terradas et al. (2021). We prescribe the temperature at the
thread centre, T0, and impose that this must correspond to the
temperature minimum, so that the boundary conditions are

T = T0, at z = 0, (11)
∂T
∂z
= 0, at z = 0. (12)

Terradas et al. (2021) showed that the following relation must be
satisfied at the thread centre,

∂2T
∂z2 =

L − ⟨Q⟩
κ∥

> 0, at z = 0. (13)

For a cold thread, the temperature at the centre must be a min-
imum. According to Equation (13), this is satisfied only when
L > ⟨Q⟩ at z = 0. This gives us a restriction on the value of the
heating rate that will be explored further.

The numerical integration of Equation (2) is performed in
two separate stages, first from z = 0 to z = L/2 and later from
z = 0 to z = −L/2. Then, the two solutions are joined to-
gether to construct the whole profile. This is done to correctly
account for asymmetries in the heating rate, ⟨Q⟩. The integration
is performed in Wolfram Mathematica with the routine NDSolve,
which automatically adapts the step size to minimise numerical
errors.

2.2. Alfvén wave heating

As in Melis et al. (2021), the heating rate ⟨Q⟩ is computed
from the dissipation of Alfvén waves. In the single-fluid magne-
tohydrodynamic approximation and assuming linear waves, an
equation that governs the stationary-state propagation of Alfvén
waves along the thread was derived by Melis et al. (2021),
namely

∂2B⊥
∂z2 +

∂
∂z

(
v2

A − iωηC

)(
v2

A − iωηC

) ∂B⊥
∂z
+

ω2(
v2

A − iωηC

)B⊥ = 0, (14)

where B⊥ is the transverse perturbation of the magnetic field, ω
is the angular wave frequency, related with the linear frequency
as f = ω/2π, vA = B/

√
µ0ρ is the Alfvén speed, with µ0 the

magnetic permeability, and ηC is the Cowling’s diffusion coeffi-
cient. Again, we note that both vA and ηC are functions of z.

Cowling’s diffusion is the joint effect of Ohm’s and am-
bipolar diffusion in a partially ionised plasma. Ohm’s diffusion
is caused by the collisions of electrons with other particles,
whereas the ambipolar diffusion is related with the collisions be-
tween neutrals and charged particles. Their coefficients are writ-
ten down as

η =
αe

µ0e2n2
e
, (15)

ηA =
ξ2n
µ0αn

, (16)

where η is the Ohm’s coefficient and ηA is the ambipolar coeffi-
cient, with ξn = 1 − ξi the fraction of neutrals. Then, the Cowl-
ing’s or total diffusion coefficient is computed as ηC = η+ B2ηA.

The wave equation (Equation (14)) needs to be solved con-
sidering appropriate boundary conditions at the ends of the
thread. We assume that the wave driver in located at the left
end of the thread, z = −L/2. Alfvén waves with a frequency,
f , are driven with a prescribed amplitude that depends upon the
adopted spectral weighting function, A( f ). Following Tu & Song

(2013) and Arber et al. (2016), the spectral weighting function is
assumed to be a piece-wise power-law function, expressed as

A ( f ) = A0


(

f
fb

)5/6
, if f ≤ fb,(

f
fb

)−5/6
, if f > fb,

(17)

where fb is the break frequency and A0 is a constant. The break
frequency is set to 1.59 mHz as in Tu & Song (2013). The choice
of this frequency is based on the observed spectrum of horizontal
photospheric motions, which suggests that this frequency is be-
tween 1 and 10 mHz (see, e.g., Matsumoto & Kitai 2010). Phys-
ically, this break frequency should correspond to the beginning
of the inertial range governed by the photospheric turbulence.
The constant A0 depends on the wave energy flux injected by
the driver. The energy flux for an Alfvén wave of frequency f
averaged over a one full period 1/ f is

⟨Π⟩ = −
1

2µ0
Re

[
v⊥B∗⊥

]
B, (18)

where * denotes the complex conjugate and v⊥ is the transverse
velocity perturbation, which can be expressed in terms of B⊥ as
(see Melis et al. 2021),

v⊥ =
i
ω

v2
A

B
∂B⊥
∂z
. (19)

The energy flux can be decomposed as ⟨Π⟩ = ⟨Π⟩↑ - ⟨Π⟩↓, where
⟨Π⟩↑ and ⟨Π⟩↓ are the parallel and anti-parallel components of
⟨Π⟩ with respect to the direction of the background magnetic
field. Their expressions are

⟨Π⟩↑ =
1
8

√
ρ

µ0
Z↑Z↑∗B, (20)

⟨Π⟩↓ =
1
8

√
ρ

µ0
Z↓Z↓∗B, (21)

where Z↑,↓ = v⊥ ∓ 1
√
µ0ρ

B⊥ are the so-called Elsässer variables
that represent parallel-propagating and anti-parallel-propagating
Alfvénic disturbances, respectively. At z = −L/2, the quantity
⟨Π⟩↑ corresponds to the wave energy flux injected by the driver
for one particular frequency, f . Thus, Σ f ⟨Π⟩

↑ is the total energy
flux injected by the driver for all the frequencies in the spectrum.
The constant A0 is computed by assuming that the total injected
energy flux is equal to a prescribed value, which is hereafter de-
noted by ⟨π⟩.

The wave driver is actually located at the photosphere, but
the thread model only includes the coronal part. It is known that
the transmission of Alfvén waves from the photosphere to the
corona is heavily influenced by the conditions in the chromo-
sphere, where reflection and dissipation can equally be important
(see Soler et al. 2017, 2019). To account for the chromospheric
filtering, we use the empirical wave energy transmission coef-
ficient from Soler et al. (2019), T ( f , Bph), which is a function
of the wave frequency, f , and the magnetic field strength at the
photosphere, Bph, namely

T ( f , Bph) ≈ a0(Bph)
1√

2πσ(Bph)2
exp

−
(
log10 f − µ(Bph)

)2

2σ(Bph)2


×

[
1 + erf

(
α(Bph)
√

2

log10 f − µ(Bph)
σ(Bph)

)]
,
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(22)

where erf is the error function, and a0, µ, σ and α are the ampli-
tude, location, scale and shape parameters, respectively, which
are given in Soler et al. (2019) and depend upon Bph. Here, we
take Bph = 100 G. Therefore, the effective spectral weighting
function at the base of the corona is

Aeff.( f , Bph) = A( f )
√
T ( f , Bph). (23)

We note that Aeff. is proportional to the square root of T ( f , Bph)
because there is quadratic relation between the wave energy and
magnetic field perturbations.

Figure 2 compares the photospheric spectral weighting func-
tion, A( f ), with the effective coronal one, Aeff.( f ). Reflection at
the chromosphere decreases the spectrum amplitude in the low
frequency range, while the strong ion-neutral damping produces
the rapid decrease of the amplitude as the frequency increases.
Indeed, the highest frequencies in the spectrum are effectively
suppressed by the chromospheric filtering.
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Fig. 2. Photospheric spectral weighting function (dash-dotted red line)
and effective coronal spectral weighting function (dashed blue line) as
functions of the wave driver frequency. Note that both axes are in loga-
rithmic scale. For the purpose of this plot, we set A0 = 1.

Hence, the form of the magnetic field perturbation at the
driver location is prescribed as

B⊥ = Aeff.( f , Bph) exp (iΦ( f )) at z = −
L
2
, (24)

where 0 < Φ( f ) < 2π represents random phase different for
each frequency in the spectrum. On the other hand, the right end
of the thread is treated as a perfectly reflecting boundary for the
waves. Contrary to the empirical transmissivity used at the left
boundary, there is no available empirical reflection coefficient to
the used at the right boundary to account for the effect of the
chromosphere, so that a boundary condition has to be imposed
arbitrarily. Melis et al. (2021) tested different boundary condi-
tions, namely total reflection, total transmission, and partial re-
flection. Concerning the wave heating rate in the cool part of the
thread, they found no significant differences between the results
for the different boundary conditions. The physical explanation
for this finding is that the high-frequency waves that actually
produce most of the heating have short damping lengths and are
almost completely dissipated during their first passing through
the thread, so that little energy is left to reach and reflect at the
boundary. Thus, we restrict ourselves to the perfectly reflecting

scenario, for which the boundary condition at the right end is
∂B⊥
∂z
= 0 at z =

L
2
. (25)

We discretise the spectrum of the driver into 101 individ-
ual frequencies between 0.1 and 100 mHz with a logarithmic
spacing. For each one of the frequencies in the discretised spec-
trum, Equation (14) with the above boundary conditions (Equa-
tions (24) and (25)) is numerically solved in Wolfram Mathe-
matica using again the routine NDSolve. However, now we use
finite elements to perform the integration with a customised non-
uniform mesh whose resolution depends upon the considered
frequency, f . Results from Terradas et al. (2021) point out that
temperature and density profiles are expected to have sharp vari-
ations at the prominence-corona transition region (PCTR). Con-
cerning the Alfvén waves, the PCTR needs to be resolved with
a sufficiently high resolution to correctly compute the transmis-
sion of the waves into the dense part of the thread. Otherwise,
artificial reflections may happen, which can heavily influence
the results. The custom grid is divided into five different re-
gions: the central part where the plasma is coolest and partially
ionised, two PCTR zones surrounding the centre where there is
the sharp variation of temperature and density, and two outer-
most parts that represent the coronal regions. For a prescribed
wave frequency, the mesh resolution in the central and coronal
regions is determined by the local Alfvén wavelength at the cen-
tre, λ0 = vA(z = 0)/ f , or at the ends, λc = vA(z = L/2)/ f ,
of the thread, respectively. We set the resolution in each region
equal to a small fraction of their respective local wavelengths,
being λ0/100 for the central region and λc/20 for the coronal
regions. In the PCTR zones, a fixed mesh resolution of 100 m
is used for all frequencies. The width of the two high-resolution
PCTR zones is set to 40 km and their location is determined by
a routine that detects the position at which the derivative of the
temperature profile with respect to z is maximum or minimum.

The numerical solution of Equation (14) provides us with
the magnetic field perturbation, B⊥, along the thread caused by
the propagation of Alfvén waves with frequency, f . The next
step is to compute the wave heating rate. The plasma heating
is the consequence of the wave energy absorption, i.e., the part
of the wave energy flux that is deposited into the plasma due to
Cowling’s diffusion. The instantaneous heating rate is computed
as

Q f = µ0ηC | j⊥|2 , (26)

where j⊥ is the perpendicular component of the current density
given by

j⊥ =
1
µ0

∂B⊥
∂z

ê⊥, (27)

where ê⊥ denotes the unit vector in the direction perpendicular
to the magnetic field. The instantaneous heating rate needs to be
averaged over one full period of the wave, 1/ f , to obtain the net
heating produced by that particular frequency, namely

⟨Q⟩ f =
ηC

2µ0

∣∣∣∣∣∂B⊥∂z
∣∣∣∣∣2 . (28)

In order to obtain the total heating rate, we add together the net
heatings produced by all the frequencies in the broadband spec-
trum. Thus,

⟨Q⟩ =
∑

f

⟨Q⟩ f . (29)

The heating profile computed in such a way is the one that is
used in the energy balance equation (Equation (2)).
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2.3. Self-consistent strategy

The goal is to obtain prominence thread models in which the
Alfvén wave heating obtained from the solution of Equation (14)
satisfies the energy balance condition (Equation (2)). Thus,
threads heated by Alfvén waves would be in thermal equilib-
rium. This equilibrium is studied in terms of two parameters:
the central temperature, T0, and the wave energy flux injected at
the photosphere, ⟨π⟩. For T0, we consider values between 7,000
to 10,000 K, as consistent with the temperatures in prominence
cores. Regarding the injected energy flux, it is expected that the
wave heating rate increases with the injected flux. Thus, we will
progressively increase the value of ⟨π⟩ until the requirement of
Equation (13) is no longer satisfied and so no equilibrium mod-
els are possible for such conditions.

The construction of self-consistent thread models heated by
Alfvén waves poses a circular problem. We must solve Equa-
tion (14) to compute the wave heating rate. Since the Alfvén
speed and the Cowling’s coefficient appear in Equation (14), we
need the temperature and density profiles to be known before-
hand. However, the temperature profile is computed from Equa-
tion (2), which in turn require the wave heating rate to be known.
The solution to this circular problem is here attacked using an it-
erative strategy.

To start with, we select particular values of T0 and ⟨π⟩ for
which the self-consistent thread model is to be computed. A
thread model satisfying the energy balance condition (Equa-
tion (2)) is obtained for the case with no wave heating, i.e., ⟨Q⟩ =
0. Subsequently, the Alfvén wave equation (Equation (14)) is
solved in that initial thread model and the wave heating rate is
obtained. This heating rate is put back in Equation (2) and a new
thread model, now including wave heating, is computed. This
completes the first iteration of the process. Generally, the initial
thread model obtained for ⟨Q⟩ = 0 and that obtained after the
first iteration would be different. To quantify the difference be-
tween models we study the variation of the length of the cool part
of the thread, hereafter called the ‘thread length’ and denoted by
a. The thread lengths are computed by automatically detecting
the position of the two PCTR zones, as explained in Section 2.2.
The location of PCTR and so the thread length are computed by
using the second derivative of temperature and detecting the val-
ues of z for which it is zero. We use the parameter ε, which is
defined as the relative error norm of the thread length, namely

ε =
|ai − ai−1|

ai
, (30)

where ai and ai−1 are the thread lengths for the iteration i and
the previous iteration, respectively. We shall assume that a self-
consistent model has been achieved when ε < ε0, where ε0
is a prescribed small tolerance. We use ε0 = 10−7. Therefore,
the process explained before for the first iteration would be re-
peated as many times as necessary until converge, if possible,
is reached. If the requirement of Equation (13) is satisfied, the
value of ε decreases with the number of iterations, leading to
successful convergence. However, if the requirement of Equa-
tion (13) is not satisfied, convergence can never be achieved and
the value of ε may even increase with the number of iterations.
Figure 3 displays the variation of ε with the number of itera-
tions in two example cases: a case in which the chosen values
of T0 and ⟨π⟩ allow convergence and a self-consistent model is
obtained and another case that does not converge.

Figure 4 summarises in a schematic way how the iterative
strategy works to compute a self-consistent model.
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10
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ϵ

Fig. 3. Variation of the parameter ε with the number of iterations for
a case that converges (dash-dotted red line) and a case that does not
converge (dashed blue line). The tolerance value of ε0 = 10−7 is denoted
by a horizontal line. Note that the vertical axis is in logarithmic scale.

3. Results

3.1. A typical thread model

We start the presentation of results by analysing a typical thread
model obtained for a certain combination of T0 and ⟨π⟩. This
will help us to understand better the results of the subsequent
parameter study.

Hence, we consider T0 = 7,000 K and ⟨π⟩ = 0.2 W m−2.
Figure 5 displays the profiles of temperature, density, ioniza-
tion fraction, Ohm’s and ambipolar coefficients, and heating rate
along the thread. The temperature profile (Figure 5a) is directly
computed from Equation (2) and its shape is similar to that ob-
tained in the models of Terradas et al. (2021) with a constant
heating term. The temperature profile can be divided into three
distinct regions: the cold central region with a parabolic-like
shape around the temperature minimum, then a sharp increase
of the temperature by several orders of magnitude in a very thin
layer that clearly matches the expected PCTR mentioned before,
and, finally, a wider region with a more gentle increase of tem-
perature that extends up to the ends of the thread, where typi-
cal coronal temperatures of order of ∼ 106 K are reached. The
temperature profile is largely symmetric with respect to z = 0.
Very small asymmetries exist, which are not noticeable at the
scale of the figure. In this particular model, the thread length is
a ≈ 2.66 Mm, which corresponds to a small fraction of the total
length of the magnetic field line, namely a/L ≈ 0.027.

Figure 5b shows the density profile, which is computed from
the temperature profile with the help of Equation (1). The density
adopts an inverse profile with respect to that of the temperature.
The largest density of ∼ 10−11 kg m−3 is located at the centre. In
the outermost coronal part of the model, the density decreases to
∼ 10−13 kg m−3 near the ends. The ionisation fraction is plotted
in Figure 5c. We recall that the ionisation fraction is computed
from the temperature using Table 1. We obtain a very narrow par-
tially ionised region around the thread centre, where the plasma
is coldest and densest, with a minimum of ξi ≈ 0.5. The plasma
rapidly gets fully ionised in the PCTR, so that ξi = 1 in the coro-
nal part of the model.

The Ohm’s diffusion coefficient, η, can be seen in Figure 5d.
Essentially, the spatial profile of η follows that of the density. The
maximum of η is located at the central part, η ∼ 1 × 103 m2 s−1,
and decreases sharply towards the coronal part of the model,
where η ∼ 1 m2 s−1. Therefore, Ohm’s diffusion is three orders of

Article number, page 6 of 12



Melis et al.: Prominence thread equilibrium models including Alfvén wave heating

Fig. 4. Flux diagram of the iterative strategy that we use to compute self-consistent thread models. All parameters are defined in the text.
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Fig. 5. Equilibrium profiles along the thread: (a) temperature, (b) density, (c) ionisation fraction, (d) Ohm’s diffusion coefficient, (e) ambipolar
diffusion coefficient, and (f ) volumetric wave heating rate. Results for T0 = 7,000 K and ⟨π⟩ = 0.2 W m−2.

magnitude more efficient in the cool central part than in the hot
coronal part. The ambipolar diffusion coefficient, ηA, is shown
in Figure 5e. The ambipolar coefficient is zero in the coronal
region of the model, where the plasma is fully ionised. Inside
the partially ionised zone, ηA has two relative maxima slightly
displaced from the centre of the thread. The maximum value is
ηA ∼ 1× 1013 m2 s−1 T−2. Considering that the background mag-
netic field strength is B = 10 G, the maximum value of the ef-
fective ambipolar diffusion coefficient is B2ηA ∼ 1 × 107 m2 s−1,
which points out that ambipolar diffusion is much more efficient
than Ohm’s diffusion in the partially ionised region.

The wave heating rate consistent with this particular model
can be seen in Figure 5f. The heating is very non-uniform along
the thread. When approaching the cold central region, the heat-
ing rate increases several orders of magnitude compared to the
values obtained in the hot coronal part. Ambipolar diffusion is
the dominant dissipation mechanism in our model and produces
most of the heating in the cold partially ionised region. In ad-
dition, unlike the rest of quantities, the heating rate displays a
clear asymmetry. Towards the right end, the heating rate tends to
zero. The reason for this asymmetry resides in the fact that the
wave driver is only located at the left end of the model, while
the boundary condition at the right end imposes total reflection.
However, the asymmetry is much less noticeable in the central

region and, indeed, the profiles obtained for the rest of model
quantities are nearly symmetric with respect to z = 0.

3.2. Effect of the central temperature

After presenting the results for a particular case, here we explore
the effect of changing the central temperature, T0. In all cases,
we keep ⟨π⟩ = 0.2 W m−2 as before. According to Terradas et al.
(2021), the thread length decreases when the central tempera-
ture increases. This result is confirmed in Figure 6, which dis-
plays the equilibrium profiles for thread models with different
values of the central temperature. Due to the near symmetry of
the models, Figure 6 only shows the profiles for positive values
of z corresponding to the central part of the thread and the PCTR,
because it is there where the main differences appear, while the
profiles in the coronal part would be seen as nearly identical.

In agreement with Terradas et al. (2021), when the central
temperature increases, the cold part of the thread becomes nar-
rower. The decrease of the thread length can be explained by
the relative importance of the various terms in the energy bal-
ance equation (Equation (2)). If the effect of heating is small,
which would happen for the small wave energy flux assumed
here, thermal conduction is mostly responsible for balancing ra-
diative losses in the equilibrium (Terradas et al. 2021). As T0
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Fig. 6. Same as Figure 5, but for different values of the central temperature, namely T0 = 7,000 K (solid blue line), T0 = 8,000 K (dashed red line),
T0 = 9,000 K (dash-dotted green line), and T0 = 10,000 K (solid black line). Only a close-up view of the central part and the PCTR of the thread
for z ≥ 0 is displayed. Results for ⟨π⟩ = 0.2 W m−2.

increases, radiative losses become more and more efficient in
the central region. Hence, thermal conduction requires a stronger
temperature gradient to compensate for the increase of radiation,
which results in narrower threads.

Another consequence of the increase of the central tempera-
ture is that the partially ionised plasma gets confined to a thinner
region and the lowest value of ξi increases. This is explained
by the relation between temperature and ionisation fraction as
seen in Table 1. The fact that the plasma gets more ionised as
T0 increases impacts on the efficiency of Ohm’s and ambipolar
diffusion. The coefficients associated with both effects become
smaller in magnitude when T0 increases.

Despite the fact that the thread length changes, the shapes
of the profiles for the different values of the central temperature
are quite similar, except that for the ambipolar diffusion coeffi-
cient (Figure 6e). For high central temperatures, the maximum
of ηA is located at the centre of the thread instead of being dis-
placed from the centre when the central temperature is low. The
ambipolar diffusion coefficient has a complicated dependence on
the temperature and ionization degree that results in this peculiar
behaviour. In turn, the heating rate (Figure 6f) has also a similar
shape for all the central temperatures considered, but its value at
the thread centre increases or decreases with T0 according to the
behaviour of the ambipolar diffusion coefficient at z = 0.

3.3. Effect of the wave energy flux

Besides the role of the central temperature, which was already
explored by Terradas et al. (2021), here we are more interested
in the effect of the injected wave energy flux. To this end, we
have set the central temperature to T0 = 7,000 K and have con-
sidered three different values of the injected energy flux, namely
⟨π⟩ = 0.2, 0.4, and 0.8 W m−2. The computed models are dis-
played in Figure 7 where, again, only positive values of z cor-
responding to the central part of the thread and the PCTR are
displayed.

Two main effects of varying ⟨π⟩ are seen in Figure 7. First
of all, the larger ⟨π⟩, the larger the wave heating rate ⟨Q⟩ (see

Figure 7f). This result is not surprising, because the wave heat-
ing rate is expected to be proportional to the injected wave en-
ergy flux. In other words, the larger the available wave energy,
the larger the energy that is dissipated. The second effect that is
obvious in Figure 7 is the growth of the thread length as ⟨π⟩ in-
creases. Indeed, this result is a consequence of the increase of the
heating rate discussed before. Following Terradas et al. (2021),
we can understand the increase of the thread length by using an
approximate analytic expression for this quantity given by

a ≈

√
2κ∥T0

L − ⟨Q⟩
, (31)

where κ∥, L, and ⟨Q⟩ need to be evaluated at the thread centre,
z = 0. If the central temperature remains constant and the wave
heating rate increases at z = 0 and approaches the minimum
value of radiative loses, then the denominator in Equation (31)
decreases. Consequently, the thread length increases. In Terradas
et al. (2021) a similar conclusion is reached although for a spa-
tially uniform heating term. Here, the heating rate is very non-
uniform along the field line, but Equation (31) can still be used
to understand to effect of the heating on the thread length. In this
regard, and for a fixed central temperature, only the value of ⟨Q⟩
at the centre seems to be relevant, while its spatial profile does
not play a role according to Equation (31). The effect of the wave
heating on the thread length is investigated further in Section 3.5.

3.4. Role of wave heating in the energy balance

Here we explore the role of wave heating in the energy balance.
We consider an illustrative example of self-consistent thread
models obtained for a central temperature of 9,000 K and two
different injected wave energy fluxes, namely ⟨π⟩ = 0.1 and
30 W m−2. Figure 8 compares the importance along the thread
of the various terms that appear in the energy balance equation
(Equation (2)), namely radiation losses, thermal conduction, and
wave heating. To better visualise the results, Figure 8 only dis-
plays the cool central part, the PCTR, and the beginning of the
coronal part.
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Fig. 7. Same as Figure 6 with T0 = 7000 K and three different values of injected wave energy flux, namely ⟨π⟩ = 0.2 W m−2 (solid blue line),
⟨π⟩ = 0.4 W m−2 (dashed red line), and ⟨π⟩ = 0.8 W m−2 (dash-dotted green line).
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Fig. 8. Comparison of the various terms in the energy balance equation (Equation (2)) in models with T0 = 9,000 K and two values of the injected
wave energy flux: (a) ⟨π⟩ = 0.1 W m−2 and (b) ⟨π⟩ = 30 W m−2. The solid black line corresponds to the wave heating rate, the dot-dashed blue line
denotes radiative losses, and the dashed red line represents the thermal conduction term. Only a close-up view of the central part and the PCTR of
the thread is displayed.

The shape of the wave heating rate is similar for both val-
ues of ⟨π⟩. The maximum of ⟨Q⟩ is located at the centre of the
thread, then there is a sharp decrease of several orders of magni-
tudes in the PCTR, so that the values of ⟨Q⟩ in the coronal part
of the model are much smaller than in the central cool part. In-
deed, as already pointed out, ⟨Q⟩ seems to mimic the profile of
the Cowling diffusion coefficient, ηC, in the central and PCTR
regions, while in the coronal zone it approximately follows the
profile of the Ohm’s diffusion coefficient, η. This highlights the
dominance of each mechanism in the different regions.

In the case with ⟨π⟩ = 0.1 W m−2, the wave heating rate is
much less important than radiative losses and thermal conduc-
tion, even in the central cool part. In this case, wave heating has
an almost negligible influence on the energy balance, since radia-
tive losses and thermal conduction essentially compensate each
other everywhere along the field line. Radiative loses have a min-
imum located at the centre of the thread, while their maximum is
located inside the PCTR around T ≈ 58,000 K. In this case, the
thermal conduction term just follows the spatial dependence of

radiative losses. Comparing the results with the work of Terradas
et al. (2021), the shapes of the radiative losses and thermal con-
duction terms obtained here are identical to those obtained in the
previous work, although Terradas et al. (2021) used a constant
heating instead of a function depending on position.

The situation changes when we consider a larger wave en-
ergy flux of ⟨π⟩ = 30 W m−2. Now, a significantly larger heat-
ing rate is obtained in the central region, which approaches the
minimum of radiative losses. For this large value of the wave
energy flux, we are close to the upper boundary of ⟨Q⟩ imposed
by Equation (13) to obtain a self-consistent model. Around the
thread centre, wave heating compensates a large fraction of radi-
ation losses, while thermal conduction has now a lower weight
on the energy balance. The relevance of wave heating only ap-
plies in the central part of the thread, where the plasma is cool
and partially ionised, while in the PCTR and, specially, in the
coronal region its contribution remains almost negligible and
thermal conduction entirely compensates cooling. These results
are consistent with the work of Melis et al. (2021), where the
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heating rate in the cool central region was estimated to be as im-
portant as radiative loses for large enough wave energy fluxes.

As already discussed in Section 3.3, another difference be-
tween the results for the two considered wave energy fluxes is
that the length of the thread increases when ⟨π⟩ = 30 W m−2

compared to the case with ⟨π⟩ = 0.1 W m−2. The computed
lengths are a ≈ 0.59 Mm for ⟨π⟩ = 0.1 W m−2 and a ≈ 0.77 Mm
for ⟨π⟩ = 30 W m−2.

3.5. Thread length: parameter survey

In view that the main effect of wave heating is to modify the
thread length, here we perform a parameter study on the varia-
tion of this quantity as a function of T0 and ⟨π⟩. Although some
results have already been obtained in previous sections, now we
carry out a more detailed investigation.
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Fig. 9. (a) Thread length, a, as a function of the injected wave energy
flux, ⟨π⟩, for different values of central temperature. (b) Percentage in-
crease of the thread length with respect to the value without wave heat-
ing as a function of ⟨π⟩ for the same central temperatures. The vertical
lines in panel (b) denote the value of ⟨π⟩max. corresponding to each tem-
perature.

Figure 9a shows the variation of thread length as a function
of the injected wave energy flux for the various central temper-
atures considered. For each central temperature, the wave en-
ergy flux has been varied between ⟨π⟩ = 0.1 W m−2 and the
maximum flux that allows the requirement of Equation (13) to
be satisfied, hereafter denoted by ⟨π⟩max.. Comparing the results
for different temperatures, we find that for low central temper-
atures the thread length is larger than for high central tempera-
tures, as already discussed in Section 3.2, but the evolution of the

thread length when ⟨π⟩ increases is similar for all the considered
central temperatures. Three different regimes are found. First,
for ⟨π⟩ ≪ ⟨π⟩max., the thread length smoothly increases with
⟨π⟩ following an approximate linear dependence. Then, when
⟨π⟩ approaches ⟨π⟩max., the thread length starts to increase more
abruptly in an approximately exponential fashion. Finally, for
⟨π⟩ → ⟨π⟩max., the thread length asymptotically tends to infin-
ity. Although our iterative strategy allows us to consider large
values of ⟨π⟩ that differ from ⟨π⟩max. by a tiny percentage, the
method becomes unstable when ⟨π⟩ is too close to ⟨π⟩max.. For
this reason, the third regime, i.e., the asymptotic behaviour of the
thread length when ⟨π⟩ → ⟨π⟩max. is only partially captured by
the results shown in Figure 9a. Such asymptotic behaviour can
be better visualised in Figure 9b, which displays the percentage
increase of the thread length as a function of ⟨π⟩ with respect to
the length obtained in the absence of wave heating. Depending
on the central temperature, a percentage increase of the thread
length between 15% and 30% is obtained for wave energy fluxes
just below ⟨π⟩max..
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Fig. 10. Thread length, a, as a function of the central temperature, T0,
in the absence of wave heating (lower red line) and for ⟨π⟩ ≈ ⟨π⟩max.
(upper blue line). The grey area indicates the range of possible thread
lengths for which a self-consistent model can be found.

Figure 10 presents the same results of Figure 9 but in a
complementary way. Figure 10 displays the thread length as a
function of the central temperature in two cases: the length ob-
tained when no wave heating is present, i.e., for ⟨π⟩ = 0, and
the length obtained for a wave energy flux just below ⟨π⟩max.,
i.e., at the beginning of the asymptotic regime. As stated be-
fore, the thread length decreases when the central temperature
increases, which is consistent with the previous results of Ter-
radas et al. (2021). For a given central temperature, Figure 10
shows the range of values of the thread length for which our
iterative method converges and a self-consistent model is ob-
tained. Threads with smaller lengths are not possible. Threads
with larger lengths are indeed possible, but only in the asymp-
totic regime when ⟨π⟩ → ⟨π⟩max., which happens in a extremely
narrow range of values of ⟨π⟩ just below ⟨π⟩max..

Another interesting result is that ⟨π⟩max. is a function of the
central temperature (see Figure 11). High central temperatures
are able to accommodate larger wave energy fluxes than low cen-
tral temperatures. Again, the reason for this result can be found
in the requirement of Equation (13) that an equilibrium model
must satisfy. At z = 0, the radiative losses provided by Athay’s
function (Equation 10) increase with T0. Therefore, the maxi-
mum wave heating rate at z = 0 that is consistent with Equa-
tion (13) also becomes larger when T0 increases. Obviously,
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larger wave heating rates, ⟨Q⟩, are associated with larger wave
energy fluxes, ⟨π⟩. The results of Figure 11 suggest a power-law
dependence of ⟨π⟩max. with T0. Therefore, we have performed a
least squares fit to the results of Figure 11 considering the fol-
lowing form,

log10⟨π⟩max. = aT0 + b, (32)

where a = (770 ± 18) × 10−6 and b = −5.49 ± 0.15 with ⟨π⟩max.
expressed in W m−2 and T0 in K. The R2 coefficient of the fit is
R2 = 0.997. The fitted function has been over-plotted in Fig-
ure 11, showing a very good approximation to the numerical
data. Hence, for a given central temperature, Equation (32) can
be used to predict the maximum wave energy flux that allows an
equilibrium model to exist.
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Fig. 11. Maximum wave energy flux injected at the photosphere, ⟨π⟩max.,
as a function of the thread central temperature, T0. The symbols are the
results of the computations, while the dashed line in the fit of Equa-
tion (32). Note that the vertical axis is in logarithmic scale.

4. Conclusions

In this paper we studied 1D models of prominence thin threads
that satisfy energy balance including heating due to Alfvén
waves. The present investigation has been built upon the pre-
vious works of Terradas et al. (2021) and Melis et al. (2021),
where equilibrium models and Alfvén wave heating were stud-
ied separately. The computation of the thread models has been
done using an iterative method involving the solution of the en-
ergy balance equation together with the Alfvén wave equation
until convergence to a self-consistent model of a thin thread is
achieved. The Alfvén waves are assumed to be launched from
the photosphere by a broadband driver that injects a prescribed
value of the wave energy flux. The waves are then dissipated in
the prominence by Ohm’s and ambipolar diffusion.

The computed thread models are composed of a cold central
region that corresponds to the prominence core (the prominence
thread itself), a thin PCTR in which there is a sharp increase
of temperature, and an external region with solar coronal prop-
erties. The wave heating rate is maximum at the central part,
where the plasma is partially ionised and ambipolar diffusion is
responsible for wave dissipation. In the outermost coronal part,
wave heating is negligible because of the irrelevance of Ohm’s
diffusion for fully ionised coronal conditions.

The magnitude of the wave heating rate in the cold central re-
gion depends on the wave energy flux injected by the driver at the
photosphere, so that the larger the injected energy flux, the larger

the heating rate. Increasing the value of the injected energy flux
results in obtaining models with longer cold regions, i.e., longer
threads. Self-consistent models can be obtained until the injected
wave energy flux produces a heating rate at the thread centre
that becomes equal to radiative losses. We performed a paramet-
ric survey in order to explore how the thread length correlates
with the injected wave energy flux and the central temperature.
The thread length decreases with increasing central temperature
and increases with the injected wave energy flux. The maximum
value of the wave energy flux that allows self-consistent models
to exist has been found to increase with the value of the central
temperature, so that hot threads can accommodate more wave
heating than cool ones.

We have used the injected wave energy flux as a free pa-
rameter of the model. Unfortunately, there are no determinations
of the Alfvén wave energy flux driven at the footpoints of the
magnetic structure of prominences. In intense photospheric flux
tubes, calculations of the transverse wave energy flux driven by
horizontal motions show that the flux generated within the pho-
tospheric flux tubes can be as large as ∼ 106 W m−2 (see, e.g.,
Spruit 1981; Ulmschneider 2000; Noble et al. 2003; Shelyag
et al. 2011). When averaged over the entire photosphere and con-
sidering the photospheric filling factor, the resulting averaged
driven flux is of the order of ∼ 104 W m−2 (see, e.g., De Pon-
tieu et al. 2001; Goodman 2011; Tu & Song 2013; Arber et al.
2016). This estimated wave energy flux applies in the case of
photospheric bright points, but it is probably much larger than
the wave energy flux driven in the case of prominences. If this
large energy flux were applicable to prominences, then our re-
sults indicate that no equilibrium models of threads would be
possible: wave heating would be simply too large. Stable threads
could not sustain such large wave energy fluxes. In essence, the
existence or absence of equilibrium models depends upon the
balance between wave heating and radiation losses at the thread
centre. While radiation losses mainly depend on the local prop-
erties of the thread, the magnitude of wave heating is determined
by how the waves are driven at the photospheric regions where
the prominence magnetic field is anchored. Recently, Li et al.
(2022) reported Alfvénic waves along prominence threads with
an estimated energy flux of 16.2–37.3 W m−2, which is more
compatible with the wave energy fluxes needed to obtain equi-
librium models.

For simplicity and to consider the same set-up as in Melis
et al. (2021), a perfectly reflecting boundary has been imple-
mented at the right end of the thread instead of considering the
presence of two different drivers located at both ends. The ex-
pected results of adding a second driver to the model are straight-
forward. If the second driver injects the same energy flux as the
first one, the heating rate in the cool region would double its
value. In turn, the maximum value of the wave energy flux to
obtain a self-consistent model would then need to account for
the sum of the fluxes injected by both drivers.

A limitation of this work is that the computation of the wave
heating rate assumes the stationary state of wave propagation.
In other words, it has been assumed that the waves have been
propagating and reflecting along the thread for enough time to
reach a stationary pattern. An alternative approach would be to
solve the time-dependent problem, for which we should resort to
full numerical simulations. The comparison of time-dependent
results with those of the stationary problem is relevant and may
be tackled in the future.

Although the present method of constructing thread models
heated by Alfvén waves provides interesting results, the back-
ground configuration is still simple compared to the observed
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complexity of prominences. A further extension would be to
consider 2D models in cylindrical geometry, which should in-
clude the perpendicular component of thermal conduction. Con-
cerning the Alfvén waves, the use of 2D models would introduce
the presence of resonances in the Alfvén continuum. Adding
these new ingredients would allow us to obtain more accurate
information about the efficiency of wave heating in solar promi-
nences and the conditions for the existence of equilibrium mod-
els. This could also be undertaken in a follow-up work.

Finally, we connect with the comment made in the Intro-
duction about the possible role that Alfvén wave heating may
have to complement radiative heating in prominences. Here we
have computed thread models with realistic lengths and central
temperatures without including radiative heating. This suggests
that Alfvén wave heating may play not only a complementary
role but an important part in the energy balance of prominence
threads that future works should keep investigating. Ideally, fu-
ture models should include both radiative and wave heating,
which is a challenging task.
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